Zuschriften

Noble-Gas Complexes

Significant Interactions between Uranium and Noble-Gas Atoms: Coordination of the UO₂⁺ Cation by Ne, Ar, Kr, and Xe Atoms**

Xuefeng Wang, Lester Andrews,* Jun Li,* and Bruce E. Bursten

We recently reported the existence of direct bonding interactions between uranium atoms and noble-gas (Ng) atoms^[1] in the matrix-isolated neutral CUO molecule from the reaction of laser-ablated U atoms with CO and isolated in solid noble-gas matrices.^[2] We have since demonstrated that CUO forms complexes with four or more noble-gas atoms bonded to the uranium atom of CUO.[3,4] The discovery of U-Ng bonding depended on the remarkable energetic closeness of two very different electronic states of CUO with distinct vibrational frequencies, and we have demonstrated that the binding of three or four Ar, Kr, or Xe atoms to CUO causes a changeover in the electronic ground state of the CUO(Ng)_n complexes.^[5,6]

The discovery of actinide-noble-gas bonding adds to the recent renaissance in noble-gas chemistry, [7,8] including the HArF molecule of Räsänen and co-workers, [9] which is kinetically stable in solid argon, and the [AuXe₄]²⁺ ion of Seidel and Seppelt, [10] which is stable enough to be characterized by X-ray crystallography. The U-Ng bonds in the CUO(Ng)_n complexes are weak: The U-Ng binding energy ranges from about 4 kcal mol⁻¹ for Ar to about 7 kcal mol⁻¹ for Xe, values that are at the threshold of what can be called a bond. In contrast, the Au–Xe bonds in $[AuXe_4]^{2+}$ are strong: Calculations estimate the Au-Xe binding energy in [AuXe₄]²⁺ as $57 \text{ kcal mol}^{-1} \text{ per bond.}^{[11,12]}$

The U-Ng bonds in our systems and the Au-Xe bonds in [AuXe₄]²⁺ are formed from Lewis acid-base interactions in which electron density in the Ng lone pairs is donated into

[*] Dr. X. Wang, Prof. Dr. L. Andrews Department of Chemistry, University of Virginia McCormick Road, P. O. Box 400319 Charlottesville, VA 22904-4319 (USA) Fax: (+1) 434-924-3710 E-mail: lsa@virginia.edu

William R. Wiley Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory

Richland, WA 99352 (USA)

Fax: (+1) 509-376-0420

E-mail: jun.li@pnl.gov

Prof. Dr. B. E. Bursten

Department of Chemistry

The Ohio State University

Columbus, OH 43210 (USA)

 $[^{\star\star}]$ This work was supported by the NSF (CHE 00-78836 to L.A.) and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. DOE Basic Energy Sciences (DE-FG02-01ER15135 to B.E.B.). This research was performed in part using the MSCF in EMSL, a national scientific user facility sponsored by the U.S. DOE, OBER and located at PNNL.

vacant orbitals on the metal center. We anticipated that part of the strong interaction between the Au and Xe atoms is due to charge polarization effects facilitated by the positive charge of Au²⁺, and we predicted that the positively charged UO₂²⁺ ion, which is isoelectronic with CUO, might form stronger U-Ng bonds.[1] Herein we report that U^V monocation, UO₂+, forms a variety of noble-gas complexes in solid noble-gas matrices, and our calculations indicate that the U-Ng bonding in these complexes is stronger than the U-Ng bonds that involve neutral CUO. The UO2+ ion has previously been isolated and characterized by a 980.1 cm⁻¹ antisymmetric U-O stretching frequency in solid neon.[13]

The laser-ablation matrix-isolation method used to prepare uranium dioxide molecules has been described previously.[13-15] Laser-ablated uranium atoms insert into dioxygen to form UO2 during condensation with excess noble gas at 4 K. Other product molecules include UO and UO₃. In addition laser-ablation produces U+ cations, which react in a similar fashion to form the linear, centrosymmetric UO₂+ cation.[13] These uranium-bearing species are identified and characterized from matrix-infrared spectra by using ¹⁶O₂, ¹⁸O₂, and ¹⁶O₂, ¹⁶O¹⁸O, ¹⁸O₂ mixtures, from comparison to frequencies observed by trapping uranium-oxide vapor species in solid argon, [16] and to frequencies calculated by using relativistic density functional theory (DFT).

The UO₂⁺ cation exhibits a strong, sharp U–O stretching mode absorption at 980.1 cm⁻¹ in solid neon, at 952.3 cm⁻¹ in solid argon, at 940.6 cm⁻¹ in solid krypton, and at 929.0 cm⁻¹ in solid xenon. These bands reveal the 1.0527 ± 0.0001 ¹⁶O/¹⁸O isotopic frequency ratio characteristic of the antisymmetric stretching mode of a linear O-U-O linkage. Our calculated antisymmetric stretching frequency of isolated UO₂⁺ is 1007 cm⁻¹ at the CCSD(T) level. The matrix shifts from this yet-to-be-observed gas-phase frequency are caused by progressively stronger bonding interactions and ioninduced dipole interactions between U and the heavier, more polarizable noble gas (Ng) atoms. How can we determine the number of Ng atoms that bind intimately to UO₂⁺ in the first coordination sphere? We prepare these $[(UO_2)(Ng)_n]^+$ complexes by using mixtures of a lighter noble gas host (Ng) doped with heavier noble-gas guest (Ng) atoms and determine the number of mixed $[(UO_2)(Ng)_n(Ng')_m]^+$ complexes prepared from their perturbations on the UO₂+ infrared spectrum. Here we warm the solid samples to allow successive substitution of heavier Ng' for lighter Ng in the first coordination sphere and to determine the number of new absorption bands formed.

The infrared spectra for UO₂⁺ in pure neon, argon, and xenon, and in mixtures of the noble gases are compared in Figure 1. Spectrum A shows the characteristic 980.1 cm⁻¹ UO_2^+ absorption in pure neon. The weaker O_4^- band^[18] decreases on annealing while the UO₂⁺ absorption increases. Experiments were done with 0.1, 0.3, and 3% Ar added to 0.01% O₂/neon samples and spectra B, C, and D evolve for successive annealing cycles into the 10-15 K range. Note the appearance of just five new absorptions at 975.1, 970.3, 965.5, 961.0 and 957.1 cm⁻¹, marked with arrows, that approach the

DOI: 10.1002/ange.200453790

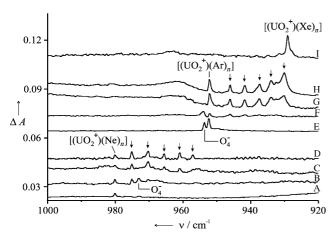


Figure 1. Infrared spectra in the 1000–900 cm⁻¹ region for UO₂+ in various solid noble-gas environments at 4 K. Samples were co-deposited with laser-ablated uranium. A) Neon with 0.01 % O2 after annealing to 10 K. B) Neon with 0.1% O₂ and 0.3% Ar. C) After annealing to 14 K. D) After annealing to 14.5 K. E) Argon with 0.4% O2 after annealing to 20 K. F) Argon with 0.1% and 6% Xe. G) After annealing to 40 K. H) After annealing to 45 K. I) Xenon with 0.2% O2 after annealing to 40 K. Arrows denote new product absorptions.

952.3 cm⁻¹ absorption of UO₂⁺ in pure argon^[13] illustrated in spectrum E.

Xenon was allowed to interact with UO₂⁺ in excess argon. The 952.3 cm⁻¹ $[(UO_2)(Ar)_n]^+$ band was observed as before, and the O₄⁻ band shifted to 953.7 cm⁻¹.[19] Annealing and increasing the Xe concentration evolved a set of five new absorptions at 946.1, 941.5, 937.2, 933.8 and 930.6 cm⁻¹, spectra F, G, and H, which terminate before the pure xenon absorption at 929.0 cm⁻¹ shown in spectrum I. A similar experiment with ¹⁸O₂ gave five new analogous bands shifted to lower frequencies with $^{16}\text{O}/^{18}\text{O}$ ratios of 1.0528 ± 0.0001 .

Infrared spectra were recorded for UO2+ in neon doped with Kr and with Xe and in argon doped with Kr, and the spectra are similar to those shown in Figure 1. Infrared absorptions for UO2+ in various noble gas environments are presented in Table 1.

Relativistic DFT calculations were performed for $[(\mathrm{UO}_2)(\mathrm{Ng})_n]^+$ (Ng = Ne, Ar,Kr, Xe; n = 0-7, $[(UO_2)(Ne)_4(Ng')]^+$ and $[(UO_2)(Ne)(Ng')_4]^+$ (Ng' = Ar, Kr,Xe) complexes by using the Amsterdam Density Functional (ADF) program^[20] with the ZORA Hamiltonian, ^[21] the PW91 functional, [22,23] and triple-zeta plus two polarization functions (TZ2P) basis sets for U and Ng. [24] To calibrate these results

Table 1: Infrared absorptions for UO2+ in various solid noble-gas environments.

Host	$ u[cm^{-1}]$	Guest	$ u$ [cm $^{-1}$]
Ne	980.1	$Ar^{[a]}$	975.1, 970.3, 965.5, 961.0, 957.1
Ne	980.1	Kr ^[b]	972.6, 967.3, 964.6, 959.8
Ne	980.1	$Xe^{[c]}$	970.0, 960.0, 952.5, 940.0
Ar	952.3	Kr ^[d]	949.4, 947.3, 945.5, 943.3, 941.6
Ar	952.3	$Xe^{[e]}$	946.0, 914.5, 937.5, 933.8, 930.6 ^[f]

[a] Ar (0.1, 0.3, 3%). [b] Kr (0.3, 1, 2%). [c] Xe (0.3, 1, 3%). [d] Kr (5, 8, 12%). [e] Xe (2, 3, 6, 8%). [f] Frequencies, $\pm 0.2 \text{ cm}^{-1}$.

additional ab initio CCSD(T) calculations were carried out for UO_2^+ and the model complexes $[(UO_2)(Ng)]^+$ (Ng = Ne,Ar, Kr, Xe) by using the MOLPRO program^[25] with the Hay-Martin effective core potentials and basis sets for U^[26] and the Stuttgart pseudopotentials and basis sets for the O and Ng atoms. [27] UO_2^+ is an f¹ complex with a ${}^2\Phi_{ij}$ ground state in the absence of spin-orbit coupling. The ground states of all the noble-gas complexes of UO₂⁺ are derived from this same state; unlike CUO, there is no significant change in the ground state upon coordination of Ng atoms. The calculated ground-state geometries, total binding energies ($-\Delta E$ for $UO_2^+ + nNg \rightarrow [UO_2(Ng)_n]^+$, and vibrational frequencies are listed in Table 2. Note that the optimized U-O and U-Ng

Table 2: Predicted geometry parameters, binding energies, and stretching vibrational frequencies of UO_2^+ , $[UO_2(Ng)]^+$, and $[UO_2(Ng)_n]^+$ (Ng = Ne, Ar, Kr, Xe). [a,b]

	U-O	U-Ng	E _B	ν_{s}	$ u_{as}$	$\nu_{\rm as}$ (exp)
UO ₂ +	1.773 (1.789)	_	0.0	911	987	_
$UO_2(Ne)^+$	1.773 (1.790)	3.08(2.83)	2.6(3.4)	909	986	-
$UO_2(Ar)^+$	1.778(1.792)	3.04(3.06)	7.0(7.9)	902	979	-
$UO_2(Kr)^+$	1.778(1.793)	3.14(3.18)	9.5 (9.2)	900	976	-
$UO_2(Xe)^+$	1.781 (1.794)	3.28(3.36)	12.7(12.1)	895	971	-
$UO_2(Ne)_6$	1.776	3.24	13.5	906	985	980.1
$UO_2(Ar)_5$	1.788	3.15	28.2	884	958	952.3
$UO_2(Kr)_5$	1.791	3.29	35.4	878	953	940.6
$UO_2(Xe)_5$	1.794	3.49	42.9	869	943	929.0

[a] The bond lengths are in $\mbox{\normalfont\AA}$, binding energies in kcal \mbox{mol}^{-1} , and frequencies in cm⁻¹. [b] The optimized CCSD(T) U-O bond lengths and binding energies are listed in parenthesis for comparison.

(NG = Ne, Ar, Kr, Xe) distances and binding energies of UO2+ and [UO2(Ng)]+ from the PW91 DFT calculations are in reasonably good agreement with those from the CCSD(T) calculations, and the calculated frequencies also agree well with the experiments.

The total DFT binding energies for four series of Ng complexes are shown Figure 2. We see that the n = 6 complex is most stable for Ne, while the n=5 complexes appear to be

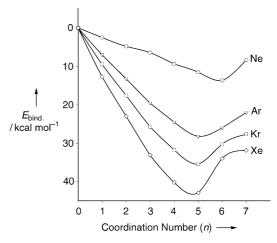


Figure 2. Total binding energy curves calculated for [UO₂(Ng)_n]⁺ (Ng = Ne, Ar, Kr, Xe) complexes by using relativistic density functional

Zuschriften

the most stable for Ar, Kr, and Xe. Our calculations indicate that all the ground states of these $[(UO_2)(Ng)_n]^+$ species are derived from the $UO_2^{+}{}^2\Phi_u$ state. Even though the states derived from the ${}^{2}\Delta_{u}$ state of UO_{2}^{+} are only $\approx 2 \text{ kcal mol}^{-1}$ higher in energy, spin-orbit coupling will favor ${}^2\Phi_{\mu}$ as the ground state. Note also that at the scalar-relativistic DFT level, replacement of six Ne atoms with five Ar atoms lowers the energy by 15 kcal mol⁻¹, replacement of Ar with Kr lowers the energy by another 7 kcal mol⁻¹, and replacement of Kr with Xe lowers the energy by an additional 7 kcal mol⁻¹. The calculated binding energies of $[(UO_2)(Ne)_4(Ng')]^+$ (Ng' = Ar,Kr, Xe) are larger than the binding energy of $[(UO_2)(Ne)_6]^+$, thus indicating that replacing two Ne atoms in the first coordination sphere with one heavier Ng atom is energetically beneficial. This observation explains why only 0.3% Ar (or Kr or Xe) in neon leads to the formation of complexes with heavier Ng' atoms. Furthermore, as shown by the calculations on the $[(UO_2)(Ne)_4(Ng')]^+$ and $[(UO_2)(Ne)(Ng')_4]^+$ complexes, substitution of Ne atoms in [(UO₂)(Ne)₆]⁺ by heavier Ng' atom(s) is energetically favorable. The theoretically optimized structure for the [(UO₂)(Ne)₄(Ar)]⁺ complex is illustrated in Figure 3.

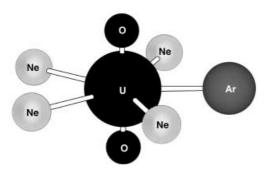


Figure 3. Structure optimized for the $[(UO_2)(Ne)_4(Ar)]^+$ cation complex by using relativistic density functional theory.

Several chemical comparisons can be made for the observed and calculated frequencies. First, the predicted strong infrared active antisymmetric stretching frequencies shift from 987 cm^{-1} for $^2\Phi_{\text{u}}$ UO_2^+ to 985 cm^{-1} $[(UO_2)(Ne)_6]^+$, and to 958, 953, and 943 cm⁻¹ $[(UO_2)(Ng)_5]^+$ (Ng = Ar, Kr, Xe), in good agreement with experimental data. The calculated frequency shifts for substituting two Ne atoms with one Ar, Kr, and Xe atom in the first coordination shell of UO₂⁺ are 8, 13, and 14 cm⁻¹, in accord with the experimentally determined shifts of 5.0, 7.4, and 10.1 cm⁻¹. Shifts of 5.6, 7.8, and 10.7 cm⁻¹ in the U-O stretching mode have been observed for the analogous $(CUO)(Ne)_{n-1}(Ng')$ complexes.^[5,6] On the other hand, smaller 2.9 and 6.3 cm⁻¹ shifts are found for $[(UO_2)(Ar)_{n-1}(Ng')]^+$ with Kr and Xe substitution, similar to what is observed for $(CUO)(Ar)_{n-1}(Ng')$. [3,4]

The combination of experimental and theoretical results presented here provide strong evidence that UO₂⁺ coordinates five heavy noble-gas atoms in forming complexes. In each of the mixed noble-gas experiments, five new IR bands are observed, which we propose are due to the stepwise

formation of $[(UO_2)(Ng)_{5-n}(Ng')_n]^+$ (n=1, 2, 3, 4, 5) complexes.^[28] The calculations predict maximum stability for UO_2^+ coordinated by five heavy Ng atoms, and the calculated frequency shifts for the five-coordinate complexes are in very good agreement with the observed shifts.

Based on a comparison of the binding energies, the U-Ng bonds in the Ng complexes of UO_2^+ are about twice as strong as those we reported for CUO, largely because of the combination of electron-donation and ion-induced dipole interactions. The calculated binding energies are also much larger than those for neutral $[(UO_2)(Ng)_n]$.^[29] The interactions of noble-gas atoms with the uranyl ion, UO_2^{2+} , may be strong enough to form stable and isolable complexes by analogy to $[AuXe_4]^{2+}$.

Received: January 19, 2004 Revised: February 11, 2004 [Z53790]

Keywords: density functional calculations · IR spectroscopy · noble gases · uranium

- J. Li, B. E. Bursten, B. Liang, L. Andrews, Science 2002, 295, 2242.
- [2] M. Zhou, L. Andrews, J. Li, B. E. Bursten, J. Am. Chem. Soc. 1999, 121, 9712.
- [3] B. Liang, L. Andrews, J. Li, B. E. Bursten, J. Am. Chem. Soc. 2002, 124, 9016.
- [4] L. Andrews, B. Liang, J. Li, B. E. Bursten, J. Am. Chem. Soc. 2003, 125, 3126.
- [5] B. Liang, L. Andrews, J. Li, B. E. Bursten, Chem. Eur. J. 2003, 9, 4781.
- [6] B. Liang, L. Andrews, J. Li, B. E. Bursten, *Inorg. Chem.* 2004, 43, 882.
- [7] P. Pyykkö, Science 2000, 290, 64.
- [8] K. O. Christe, Angew. Chem. 2001, 113, 1465; Angew. Chem. Int. Ed. 2001, 40, 1419.
- [9] L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, M. Räsänen, *Nature* 2000, 406, 874.
- [10] S. Seidel, K. Seppelt, Science 2000, 290, 117.
- [11] W.-P. Hu, C.-H. Huang, J. Am. Chem. Soc. 2001, 123, 2340.
- [12] For a recent review on bonding in metal-ion-rare-gas complexes see: D. Bellert, W. H. Breckenridge, Chem. Rev. 2002, 102, 1595.
- [13] M. F. Zhou, L. Andrews, N. Ismail, C. Marsden, J. Phys. Chem. A 2000, 104, 5495.
- [14] R. D. Hunt, L. Andrews, J. Chem. Phys. 1993, 98, 3690.
- [15] L. Andrews, A. Citra, Chem. Rev. 2002, 102, 885.
- [16] S. D. Gabelnick, G. T. Reedy, M. G. Chasanov, J. Chem. Phys. 1973, 58, 4468.
- [17] The 952.3 cm⁻¹ band was first attributed to a [(UO₂)²⁺(O₂)²⁻] charge-transfer complex because this absorption falls in the region for the uranyl cation infrared active mode in condensed phases. [14] However, more dilute experiments indicate that a single O₂ molecule is involved. [13] Furthermore, the very high second ionization energy of UO₂ shows that UO₂²⁺, if formed, would interact strongly with the heavier noble gases. Finally, our calculations predict that isolated UO₂²⁺ will absorb above 1100 cm⁻¹, and that isolated UO₂⁺ will exhibit a strong absorption near 1000 cm⁻¹.
- [18] W. E. Thompson, M. E. Jacox, J. Chem. Phys. 1989, 91, 3826.
- [19] G. V. Chertihin, L. Andrews, J. Chem. Phys. 1998, 108, 6404.
- [20] ADF 2002.03, SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands (http://www.scm.com).

- [21] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597–4610.
- [22] J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
- [23] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Foilhais, *Phys. Rev. B* 1992, 46, 6671.
- [24] E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142.
- [25] MOLPRO is designed and written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone R. Tarroni, and T. Thorsteinsson.
- [26] P. J. Hay, R. L. Martin, J. Chem. Phys. 1998, 109, 3875.
- [27] a) A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, *Mol. Phys.* 1993, 80, 1431b) A. Nicklaß, M. Dolg, H. Stoll, H. Preuss, *J. Chem. Phys.* 1995, 102, 8942.
- [28] The fifth bands are not observed for Kr and Xe in Ne owing to insufficient annealing range before Ne evaporates.
- [29] J. Li, B. E. Bursten, L. Andrews, C. J. Marsden, J. Am. Chem. Soc. 2004, 126, 3424.